手机浏览器扫描二维码访问
拉格朗日对对方程感兴趣的鲁菲尼说:“我突然有个发现,不知道对不对。”
鲁菲尼说:“我知道,你这两天在研究解方程的问题,没有弄力学。”
拉格朗日说:“力学是一辈子的事儿,也不在乎这几天。更何况,方程就是为了解决力学的。”
鲁菲尼说:“方程的问题,无非就是解高次方程。”
拉格朗日说:“肯定的,只是我发现了一种奇特的东西,五次方程恐怕没有解法。”
鲁菲尼说:“可以理解,但是我不能肯定你说的话。毕竟,三次方程的解就有了足够的难度,四次方程以及难的上青天了。五次方程就算有解,恐怕能长的写一本书了。”
拉格朗日说:“我决定貌似不能用代数方法表达出来。”
鲁菲尼说:“胡说!哪里会有这种事情?”
拉格朗日说:“关键是,我还发现了一种奇怪的特征,我想跟你讨论。”
鲁菲尼说:“还有奇怪的?”
拉格朗日说:“我发现2、3、4次方程的解与2、3、4元素的置换有关系。”
说着拉格朗日画出了2、3、4的置换,对鲁菲尼讲解了置换的概念。
鲁菲尼说:“貌似确实有关系,我以前有这样的感觉,但是没有认真注意过,你认为5次置换……”
拉格朗日说:“没错,五次的置换有问题!”
鲁菲尼说:“现在面临着两个问题,第一,五次置换有什么问题,你能说清这个问题吗?第二,五次置换的问题跟5次方程有关系吗?第三,你能用现有的代数学证明出来吗?”
拉格朗日说:“第一,我用第六感能感觉出来,肯定有关系。只是这第二个,有点麻烦。恐怕不能用现有的代数知识来证明。需要引入新的数学工具。”
鲁菲尼说:“如果引入新工具,你的这个新工具就要有严谨性和准确性,不能有让人怀疑的地方。”
拉格朗日说:“姑且叫这个理论为置换理论吧,对于3、4次的置换,他们都要自己的整个的子交换,5次没有这种正规的子交换。”
鲁菲尼说:“什么是子交换?”
拉格朗日说:“像合数有自己的因子一样,交换也有自己的因此,可以做乘除法运算。如果H是有限交换G的子交换,那H的阶整除G的阶。阶就是可以交换数。我试过2、3、4次这些置换的乘除,和对应的置换的乘除,都是成功的。而5次根本就没有2、3、4次这样成功的结构。”
鲁菲尼说:“因为你看到五次方程没有这种正常的子交换,所以,你认定五次方程不会有代数的解法。我认为这个说法还是有些突兀。”
拉格朗日说:“这个问题有复杂,只能交给聪明的后代去做了。”
喜欢数学心请大家收藏:()数学心
仙骨 尘封的仙路 偏偏宠上你 造孽啊,曹贼竟是我自己 剑神韩友平第一部 好运撞末日 邪灵战神 神奇宝贝:开局十连抽,获得梦幻 都市重生:我在七日世界刷神宠 在明末奋斗 开局被渣,反手投资女帝无敌 高冷学神之攻略手册 沉睡千年醒来,749局找上门 一本杂录 包青天断案传奇故事汇 柯南!快看,你爸爸过来了! 春过辽河滩 跨越阶层的恋爱 开局成为峰主,打造万古不朽仙门 大清话事人
王虎穿越了,而且悲催的成了五指山下的一只老虎。我去,这是要做猴哥虎皮裙的节奏?王虎表示不服。作为一只21世纪穿越来的新时代老虎,怎么着也要和猴哥拜把子,做兄弟啊!此时此刻齐天大圣孙悟空被压五行山马上就满五百年,再有十年,波澜壮阔,影响三界格局的西天取经之旅就要开始,看王虎如何在其中搅动三界风云,与猴哥一起再掀万...
...
这里不是春秋战国,也不是东汉末年!似曾相识的齐楚秦魏,截然不同的列国争雄!来自现代的灵魂,入主王侯之家,却命悬一线君王之路,前狼后虎,他将何去何从!大争之世,群雄并起,谁能主宰沉浮!魏无忌寡人这辈子只信刀剑说话,管你诸侯还是天子,不服的有种就站出来。本书群号327625454PS本书...
...
一个热爱网络游戏的痴孩子,二不垃及的真神祝愿下进入了游戏的世界。。。。。。...
...