手机浏览器扫描二维码访问
这里柯尼斯堡,是普鲁士兴起之地,也是俄罗斯喜欢争夺的地方,后来是俄罗斯加里宁格勒。
康德也来过这个地方,歌德巴赫也在这里提出猜想。
殴拉也来到这里,在柯尼斯堡的七个桥这里经常闲逛,这样可以行走思考问题,想想自己以后该干什么。
擅长把任何生活问题的殴拉,总觉得这七个桥有些怪怪的。
时间一久,他才发现,着七个桥不能不走回头路的全部走完。
对殴拉来说,他只喜欢一个地方逛一次,如果重复就会失去兴趣。
殴拉看着着七个桥,心想:“如何走这个桥,才能不重复的全部走完?”
对殴拉来说,没有无法解决的数学问题,只要设置一个模型就可以了。
殴拉把七个桥按照对应位置画出了一个图,把可以行走的路线连接起来。
连接之后,殴拉试图开始寻找一条路走法,但是画了半天,却还没有画出来。
“难不成,不能一下子全部走完这七座桥?”
殴拉发出疑问:“可是,这又是为什么?就算不能一步走完,也会有原因的吧?”
后来欧拉把它转化成一个几何问题——一笔画问题。
1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支——图论与几何拓扑,也由此展开了数学史上的新历程。
他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:奇点的数目不是0个就是2个(连到一点的数目如是奇数条,就称为奇点,如果是偶数条就称为偶点,要想一笔画成,必须中间点均是偶点,也就是有来路必有另一条去路,奇点只可能在两端,因此任何图能一笔画成,奇点要么没有要么在两端)。
喜欢数学心请大家收藏:()数学心
包青天断案传奇故事汇 沉睡千年醒来,749局找上门 神奇宝贝:开局十连抽,获得梦幻 造孽啊,曹贼竟是我自己 仙骨 柯南!快看,你爸爸过来了! 邪灵战神 尘封的仙路 偏偏宠上你 剑神韩友平第一部 大清话事人 都市重生:我在七日世界刷神宠 开局被渣,反手投资女帝无敌 好运撞末日 春过辽河滩 在明末奋斗 开局成为峰主,打造万古不朽仙门 跨越阶层的恋爱 一本杂录 高冷学神之攻略手册
甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
...
这里不是春秋战国,也不是东汉末年!似曾相识的齐楚秦魏,截然不同的列国争雄!来自现代的灵魂,入主王侯之家,却命悬一线君王之路,前狼后虎,他将何去何从!大争之世,群雄并起,谁能主宰沉浮!魏无忌寡人这辈子只信刀剑说话,管你诸侯还是天子,不服的有种就站出来。本书群号327625454PS本书...
一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...
...