新浪中文网

手机浏览器扫描二维码访问

第一百五十章 克莱姆悖论-与线性代数的产生线性代数(第1页)

虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的Cramer悖论就是一个漂亮的例子。

在描述Cramer悖论之前,让我们先来考虑一个简单的情况。

两条直线交于一点。

反过来,过一点可以做两条不同的直线。

事实上,过一点可以做无数条直线。

确定一条直线需要两个点才够。

一切都很正常。

现在,考虑平面上的两条三次曲线。

由于将两个二元三次方程联立求解,最多可以得到9组不同的解,因此两条三次曲线最多有9个交点。另外,三次曲线的一般形式为

x^3+a·x^2·y+b·x·y^2+c·y^3+d·x^2+e·x·y+f·y^2+g·x+h·y+i=0

这里面一共有9个未知系数。

代入曲线上的9组不同的(x,y),我们就能得出9个方程,解出这9个未知系数,恢复出这个三次曲线的原貌。

也就是说,平面上的9个点唯一地确定了一个三次曲线。

这次貌似就出问题了:“两条三次曲线交于9个点”和“9个点唯一地确定一条三次曲线”怎么可能同时成立呢?

既然这9个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?

在没有线性代数的年代,这是一个令人匪夷所思的问题。

Cramer和Euler是同一时代的两位大数学家。

他们曾就代数曲线问题有过不少信件交流。

上面这个问题就是1744年9月30日Cramer在给Euler的信中提出来的。

在信中,Cramer摆出了两个稍作思考便能看出显然成立的事实:一条三次曲线能用9个点唯一地确定下来,两条三次曲线可能产生出9个交点。

Cramer向Euler提出了自己的疑问:这两个结论怎么可能同时成立呢?

Euler心中的疑问不比Cramer的少。

接下来的几年里,他都在寻找这个矛盾产生的源头。

1748年,Euler发表了一篇题为Surunecontradictionapparentedansladoctrinedeslignescourbes(关于曲线规律中的一个明显的矛盾)的文章,尝试着解决这一难题。

高冷学神之攻略手册  神奇宝贝:开局十连抽,获得梦幻  开局成为峰主,打造万古不朽仙门  剑神韩友平第一部  邪灵战神  都市重生:我在七日世界刷神宠  开局被渣,反手投资女帝无敌  沉睡千年醒来,749局找上门  好运撞末日  春过辽河滩  偏偏宠上你  在明末奋斗  大清话事人  尘封的仙路  包青天断案传奇故事汇  一本杂录  造孽啊,曹贼竟是我自己  跨越阶层的恋爱  仙骨  柯南!快看,你爸爸过来了!  

热门小说推荐
影后重生:厉先生撩妻成瘾

影后重生:厉先生撩妻成瘾

甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...

特种岁月

特种岁月

男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...

魏武侯

魏武侯

这里不是春秋战国,也不是东汉末年!似曾相识的齐楚秦魏,截然不同的列国争雄!来自现代的灵魂,入主王侯之家,却命悬一线君王之路,前狼后虎,他将何去何从!大争之世,群雄并起,谁能主宰沉浮!魏无忌寡人这辈子只信刀剑说话,管你诸侯还是天子,不服的有种就站出来。本书群号327625454PS本书...

漫兽竞技场

漫兽竞技场

一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...

每日热搜小说推荐